3.778 \(\int \cos (c+d x) (a+b \sec (c+d x))^2 (B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\)

Optimal. Leaf size=86 \[ \frac{\left (2 a^2 C+4 a b B+b^2 C\right ) \tanh ^{-1}(\sin (c+d x))}{2 d}+a^2 B x+\frac{b (3 a C+2 b B) \tan (c+d x)}{2 d}+\frac{b C \tan (c+d x) (a+b \sec (c+d x))}{2 d} \]

[Out]

a^2*B*x + ((4*a*b*B + 2*a^2*C + b^2*C)*ArcTanh[Sin[c + d*x]])/(2*d) + (b*(2*b*B + 3*a*C)*Tan[c + d*x])/(2*d) +
 (b*C*(a + b*Sec[c + d*x])*Tan[c + d*x])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.141975, antiderivative size = 86, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.132, Rules used = {4072, 3918, 3770, 3767, 8} \[ \frac{\left (2 a^2 C+4 a b B+b^2 C\right ) \tanh ^{-1}(\sin (c+d x))}{2 d}+a^2 B x+\frac{b (3 a C+2 b B) \tan (c+d x)}{2 d}+\frac{b C \tan (c+d x) (a+b \sec (c+d x))}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]*(a + b*Sec[c + d*x])^2*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

a^2*B*x + ((4*a*b*B + 2*a^2*C + b^2*C)*ArcTanh[Sin[c + d*x]])/(2*d) + (b*(2*b*B + 3*a*C)*Tan[c + d*x])/(2*d) +
 (b*C*(a + b*Sec[c + d*x])*Tan[c + d*x])/(2*d)

Rule 4072

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 3918

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> -Simp[(b*
d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1))/(f*m), x] + Dist[1/m, Int[(a + b*Csc[e + f*x])^(m - 2)*Simp[a^2*c
*m + (b^2*d*(m - 1) + 2*a*b*c*m + a^2*d*m)*Csc[e + f*x] + b*(b*c*m + a*d*(2*m - 1))*Csc[e + f*x]^2, x], x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && GtQ[m, 1] && NeQ[a^2 - b^2, 0] && IntegerQ[2*m]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \cos (c+d x) (a+b \sec (c+d x))^2 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx &=\int (a+b \sec (c+d x))^2 (B+C \sec (c+d x)) \, dx\\ &=\frac{b C (a+b \sec (c+d x)) \tan (c+d x)}{2 d}+\frac{1}{2} \int \left (2 a^2 B+\left (4 a b B+2 a^2 C+b^2 C\right ) \sec (c+d x)+b (2 b B+3 a C) \sec ^2(c+d x)\right ) \, dx\\ &=a^2 B x+\frac{b C (a+b \sec (c+d x)) \tan (c+d x)}{2 d}+\frac{1}{2} (b (2 b B+3 a C)) \int \sec ^2(c+d x) \, dx+\frac{1}{2} \left (4 a b B+2 a^2 C+b^2 C\right ) \int \sec (c+d x) \, dx\\ &=a^2 B x+\frac{\left (4 a b B+2 a^2 C+b^2 C\right ) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{b C (a+b \sec (c+d x)) \tan (c+d x)}{2 d}-\frac{(b (2 b B+3 a C)) \operatorname{Subst}(\int 1 \, dx,x,-\tan (c+d x))}{2 d}\\ &=a^2 B x+\frac{\left (4 a b B+2 a^2 C+b^2 C\right ) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{b (2 b B+3 a C) \tan (c+d x)}{2 d}+\frac{b C (a+b \sec (c+d x)) \tan (c+d x)}{2 d}\\ \end{align*}

Mathematica [A]  time = 0.26881, size = 67, normalized size = 0.78 \[ \frac{\left (2 a^2 C+4 a b B+b^2 C\right ) \tanh ^{-1}(\sin (c+d x))+2 a^2 B d x+b \tan (c+d x) (4 a C+2 b B+b C \sec (c+d x))}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]*(a + b*Sec[c + d*x])^2*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(2*a^2*B*d*x + (4*a*b*B + 2*a^2*C + b^2*C)*ArcTanh[Sin[c + d*x]] + b*(2*b*B + 4*a*C + b*C*Sec[c + d*x])*Tan[c
+ d*x])/(2*d)

________________________________________________________________________________________

Maple [A]  time = 0.056, size = 133, normalized size = 1.6 \begin{align*}{a}^{2}Bx+{\frac{B{a}^{2}c}{d}}+{\frac{{a}^{2}C\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{d}}+2\,{\frac{Bab\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{d}}+2\,{\frac{abC\tan \left ( dx+c \right ) }{d}}+{\frac{B{b}^{2}\tan \left ( dx+c \right ) }{d}}+{\frac{{b}^{2}C\sec \left ( dx+c \right ) \tan \left ( dx+c \right ) }{2\,d}}+{\frac{{b}^{2}C\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{2\,d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(a+b*sec(d*x+c))^2*(B*sec(d*x+c)+C*sec(d*x+c)^2),x)

[Out]

a^2*B*x+1/d*B*a^2*c+1/d*a^2*C*ln(sec(d*x+c)+tan(d*x+c))+2/d*B*a*b*ln(sec(d*x+c)+tan(d*x+c))+2/d*a*b*C*tan(d*x+
c)+1/d*B*b^2*tan(d*x+c)+1/2/d*b^2*C*sec(d*x+c)*tan(d*x+c)+1/2/d*b^2*C*ln(sec(d*x+c)+tan(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 0.963041, size = 189, normalized size = 2.2 \begin{align*} \frac{4 \,{\left (d x + c\right )} B a^{2} - C b^{2}{\left (\frac{2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 2 \, C a^{2}{\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 4 \, B a b{\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 8 \, C a b \tan \left (d x + c\right ) + 4 \, B b^{2} \tan \left (d x + c\right )}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))^2*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

1/4*(4*(d*x + c)*B*a^2 - C*b^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c)
 - 1)) + 2*C*a^2*(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) + 4*B*a*b*(log(sin(d*x + c) + 1) - log(sin(d*
x + c) - 1)) + 8*C*a*b*tan(d*x + c) + 4*B*b^2*tan(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 0.524719, size = 335, normalized size = 3.9 \begin{align*} \frac{4 \, B a^{2} d x \cos \left (d x + c\right )^{2} +{\left (2 \, C a^{2} + 4 \, B a b + C b^{2}\right )} \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) -{\left (2 \, C a^{2} + 4 \, B a b + C b^{2}\right )} \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \,{\left (C b^{2} + 2 \,{\left (2 \, C a b + B b^{2}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))^2*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

1/4*(4*B*a^2*d*x*cos(d*x + c)^2 + (2*C*a^2 + 4*B*a*b + C*b^2)*cos(d*x + c)^2*log(sin(d*x + c) + 1) - (2*C*a^2
+ 4*B*a*b + C*b^2)*cos(d*x + c)^2*log(-sin(d*x + c) + 1) + 2*(C*b^2 + 2*(2*C*a*b + B*b^2)*cos(d*x + c))*sin(d*
x + c))/(d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))**2*(B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.23939, size = 259, normalized size = 3.01 \begin{align*} \frac{2 \,{\left (d x + c\right )} B a^{2} +{\left (2 \, C a^{2} + 4 \, B a b + C b^{2}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right ) -{\left (2 \, C a^{2} + 4 \, B a b + C b^{2}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right ) - \frac{2 \,{\left (4 \, C a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 2 \, B b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - C b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 4 \, C a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, B b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - C b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{2}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))^2*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

1/2*(2*(d*x + c)*B*a^2 + (2*C*a^2 + 4*B*a*b + C*b^2)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - (2*C*a^2 + 4*B*a*b +
 C*b^2)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(4*C*a*b*tan(1/2*d*x + 1/2*c)^3 + 2*B*b^2*tan(1/2*d*x + 1/2*c)^
3 - C*b^2*tan(1/2*d*x + 1/2*c)^3 - 4*C*a*b*tan(1/2*d*x + 1/2*c) - 2*B*b^2*tan(1/2*d*x + 1/2*c) - C*b^2*tan(1/2
*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^2)/d